Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk.
نویسندگان
چکیده
NK cells are effector lymphocytes that can recognize and eliminate virally infected and transformed cells. NK cells express distinct activating receptors, including an ITAM-containing FcR complex that recognizes Ab-coated targets, and the DNAX-activating protein of 10 kDa-containing NKG2D receptor complex that recognizes stress-induced ligands. The regulatory role of specific tyrosine kinases in these pathways is incompletely understood. In this study, we show that, in activated human NK cells, the tyrosine kinase IL-2-inducible T cell kinase (Itk), differentially regulates distinct NK-activating receptors. Enhanced expression of Itk leads to increases in calcium mobilization, granule release, and cytotoxicity upon stimulation of the ITAM-containing FcR, suggesting that Itk positively regulates FcR-initiated cytotoxicity. In contrast, enhanced Itk expression decreases cytotoxicity and granule release downstream of the DNAX-activating protein of 10 kDa-containing NKG2D receptor, suggesting that Itk is involved in a pathway of negative regulation of NKG2D-initiated granule-mediated killing. Using a kinase mutant, we show that the catalytic activity of Itk is required for both the positive and negative regulation of these pathways. Complementary experiments where Itk expression was suppressed also showed differential regulation of the two pathways. These findings suggest that Itk plays a complex role in regulating the functions initiated by distinct NK cell-activating receptors. Moreover, understanding how these pathways may be differentially regulated has relevance in the setting of autoimmune diseases and antitumor immune responses where NK cells play key regulatory roles.
منابع مشابه
Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-regulated kinases.
Extracellular signal-regulated kinases (ERK, also known as mitogen-activated protein kinases) are serine-threonine kinases transducing signals elicited upon ligand binding to several tyrosine kinase-associated receptors. We have reported that ERK2 phosphorylation and activation follows engagement of the low affinity receptor for the Fc portion of IgG (CD16) on NK cells, and is necessary for CD1...
متن کاملSH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD16-mediated cytotoxicity in human NK cells.
Membrane recruitment of the SH2-containing 5' inositol phosphatase 1 (SHIP-1) is responsible for the inhibitory signals that modulate phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways. Here we have investigated the molecular mechanisms underlying SHIP-1 activation and its role in CD16-mediated cytotoxicity. We initially demonstrated that a substantial fraction of SHIP-1-mediated...
متن کاملCutting edge: NKp80 uses an atypical hemi-ITAM to trigger NK cytotoxicity.
The human NK cell receptor NKp80 stimulates cytotoxicity upon engagement of its genetically linked ligand AICL. However, the mechanisms underlying NKp80-mediated signaling are unknown. In this study, we dissected NKp80 signaling using the NK cell line NK92MI. We demonstrated that NKp80, but not NKp80 mutated at tyrosine 7 (NKp80/Y7F), is tyrosine phosphorylated. Accordingly, NKp80/Y7F, but not ...
متن کاملSyk regulation of phosphoinositide 3-kinase-dependent NK cell function.
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 178 6 شماره
صفحات -
تاریخ انتشار 2007